데이터 과학/통계학, 머신러닝

안재현, XAI 설명 가능한 인공지능, 인공지능을 해부하다, 위키북스

booksworld 2025. 2. 16. 01:00

 

'XAI 설명 가능한 인공지능, 인공지능을 해부하다'는 인공지능의 복잡한 의사결정 과정을 이해하고 설명할 수 있는 방법을 탐구하는 책입니다. 안재현 저자의 이 책은 XAI(eXplainable Artificial Intelligence)의 개념을 중심으로, 인공지능의 '블랙박스' 문제를 해결하고 신뢰성을 높이는 방법을 소개합니다.

책은 XAI의 기본 개념부터 시작하여, 머신러닝과 딥러닝 모델에 적용할 수 있는 다양한 XAI 기법을 다루고 있습니다. 특히, 피처 중요도, 부분 의존성 플롯, XGBoost, LIME, SHAP, 필터 시각화, 합성곱 신경망(CNN), LRP 등 다양한 기술을 실습과 함께 설명합니다. 이러한 실습은 독자들이 직접 코드와 예제를 통해 XAI 기법을 이해하고 적용할 수 있도록 돕습니다.

또한, 책은 실전 분석을 통해 신용 대출 모델과 사진 감정 분석 모델을 구축하고 설명하는 과정을 상세히 다룹니다. 이를 통해 독자들은 XAI를 활용한 모델의 해석과 개선 방법을 배울 수 있습니다.

이 책은 컴퓨터공학, 인공지능, 데이터 과학 분야에 관심 있는 대학생, 연구자, 실무자들에게 유익한 자료가 될 것입니다. XAI의 이론적 배경과 실무 적용 사례를 함께 제공하여, 인공지능의 투명성과 신뢰성을 높이기 위한 실질적인 방법을 제시합니다. XAI에 대한 깊이 있는 이해와 실습을 통해 인공지능의 미래를 준비하는 데 큰 도움이 될 것입니다.

 

 

 

목차


▣ 01장: 이야기를 열며
1.1. 다르파(DARPA)의 혁신 프로젝트
1.2. XAI (2016-2021)
1.3. XAI를 잘하기 위한 조건
___1.3.1. 기존 머신러닝 이론을 충분히 이해하기
___1.3.2. 설명 모델을 어떻게 접목할지 생각하기
1.4. xgboost를 사용한 XAI와 딥러닝 XAI?
1.5. 감사 인사

▣ 02장: 실습환경 구축
2.1. 파이썬 설치
2.2. PIP 설치
2.3. 텐서플로 설치
2.4. 주피터 노트북
2.4.1. Tensorflow-GPU 설치 확인

▣ 03장: XAI 개발 준비
3.1. 머신러닝 이해
3.2. 블랙박스 들여다보기
3.3. 시각화와 XAI의 차이 이해하기

▣ 04장: 의사 결정 트리
4.1. 의사 결정 트리 시각화
4.2. 피처 중요도 구하기
4.3. 부분 의존성 플롯(PDP) 그리기
4.4. XGBoost 활용하기
___4.4.1. XGBoost의 장점
___4.4.2. XGBoost는 딥러닝이 아니다
___4.4.3. 기본 원리
___4.4.4. 파라미터
___4.4.5. 실제 동작과 팁
4.5. 실습 1: 피마 인디언 당뇨병 결정 모델
___4.5.1. 학습하기
___4.5.2. 설명 가능한 모델 결합하기
___4.5.3. 모델 튜닝하기
___4.5.4. 마치며

▣ 05장: 대리 분석
5.1. 대리 분석 개론
___5.1.1. 글로벌 대리 분석
___5.1.2. 로컬 대리 분석(Local Surrogate)
5.2. LIME
___5.2.1. LIME 알고리즘, 직관적으로 이해하기
___5.2.2. 배경 이론
___5.2.3. 실습 2: 텍스트 데이터에 LIME 적용하기
___5.2.4. 실습 3: 이미지 데이터에 LIME 적용하기
___5.2.5. 마치며
5.3. SHAP (SHapley Additive exPlanations)
___5.3.1. 배경 이론
___5.3.2. 실습 4: 공유 경제 스타트업에서 섀플리 값 사용하기
___5.3.3. 실습 5: 보스턴 주택 가격 결정 요소 구하기
___5.3.4. 마치며

▣ 06장: 필터 시각화(Filter Visualization)
6.1. 이미지 필터 시각화
6.2. 설명 가능한 모델 결합하기
___6.2.1. 합성곱 신경망과 필터
6.3. 합성곱 신경망 제작하기
6.4. 실습 6: 합성곱 신경망 시각화하기
___6.4.1. 입력값 시각화하고 예측값과 비교하기
___6.4.2. 필터 시각화
6.5. 마치며

▣ 07장: LRP(Layer-wise Relevance Propagation)
7.1. 배경 이론
___7.1.1. 분해(Decomposition)
___7.1.2. 타당성 전파
7.2. 실습 7: 합성곱 신경망 속 열어보기
___7.2.1. 합성곱 신경망 학습하기
___7.2.2. 합성곱 신경망 부분 그래프 구하기
___7.2.3. 합성곱 신경망에 LRP 적용하기
___7.3. LRP 등장 이전과 이후의 딥러닝 XAI 동향
7.4. 마치며

▣ 08장: 실전 분석 1: 의사 결정 트리와 XAI
8.1. 신용 대출 분석 인공지능 만들기
___8.1.1. 데이터 설명
___8.1.2. 칼럼 설명
___8.1.3. 데이터 불러오기
___8.1.4. 데이터 학습하기
8.2. XAI를 결합하기
8.3. XAI로 모델을 파악하기
8.4. XAI로 모델 개선 근거 마련하기

▣ 09장: 실전 분석 2: LRP와 XAI
9.1. 감정 분석 모델 만들기
___9.1.1. 데이터 설명
___9.1.2. 칼럼 설명
___9.1.3. 데이터 불러오기
___9.1.4. 데이터 학습하기
9.2. XAI 결합하기
9.3. XAI로 원래 인공지능 개선하기
9.4. 고지사항

▣ 10장: 이야기를 닫으며
10.1. 암흑물질 찾기
10.2. 기존 모델에 XAI 덧입히기
10.3. XAI의 미래

▣ 11장: 참고자료
11.1. XAI 실습 라이브러리 설치하기
___11.1.1. 파이썬 설치
___11.1.2. 파이썬 라이브러리 설치
___11.1.3. 텐서플로 설치
11.2. 캔들스틱 차트
11.3. 컨퓨전 행렬
___11.3.1. 정확도(Accuracy)
___11.3.2. 정밀성(Precision)
___11.3.3. 민감도(Sensitivity, 또는 Recall)
___11.3.4. 특이성(Specificity)
___11.3.5. 낙제율(Fallout)
___11.3.6. F1-점수(F1-score)
11.4. 텐서플로 슬림
11.5. 정규화

 

 

 

- 교보문고: https://bitl.bz/ecyDW1

- Yes24: https://bitl.bz/1rlYty